Mallet topic model example can not compile -


i want compile mallet in java (instead using command line), include jar in project, , cite code of example from: http://mallet.cs.umass.edu/topics-devel.php, however, when run code, there error :

exception in thread "main" java.lang.noclassdeffounderror: gnu/trove/tobjectinthashmap     @ cc.mallet.types.alphabet.<init>(alphabet.java:51)     @ cc.mallet.types.alphabet.<init>(alphabet.java:70)     @ cc.mallet.pipe.tokensequence2featuresequence.<init>    (tokensequence2featuresequence.java:35) @ mallet.topicmodel.main(topicmodel.java:25) caused by: java.lang.classnotfoundexception: gnu.trove.tobjectinthashmap @ java.net.urlclassloader$1.run(unknown source) @ java.net.urlclassloader$1.run(unknown source) @ java.security.accesscontroller.doprivileged(native method) @ java.net.urlclassloader.findclass(unknown source) @ java.lang.classloader.loadclass(unknown source) @ sun.misc.launcher$appclassloader.loadclass(unknown source) @ java.lang.classloader.loadclass(unknown source) ... 4 more 

i not sure causes error. help?

package mallet;  import cc.mallet.util.*; import cc.mallet.types.*; import cc.mallet.pipe.*; import cc.mallet.pipe.iterator.*; import cc.mallet.topics.*;  import java.util.*; import java.util.regex.*; import java.io.*;  public class topicmodel {  public static void main(string[] args) throws exception {      string filepath = "d:/ap.txt";     // begin importing documents text feature sequences     arraylist<pipe> pipelist = new arraylist<pipe>();      // pipes: lowercase, tokenize, remove stopwords, map features     pipelist.add( new charsequencelowercase() );     pipelist.add( new charsequence2tokensequence(pattern.compile("\\p{l}[\\p{l}\\p{p}]+\\p{l}")) );     pipelist.add( new tokensequenceremovestopwords(new file("stoplists/en.txt"), "utf-8", false, false, false) );     pipelist.add( new tokensequence2featuresequence() );      instancelist instances = new instancelist (new serialpipes(pipelist));      reader filereader = new inputstreamreader(new fileinputstream(new file(filepath)), "utf-8");     instances.addthrupipe(new csviterator (filereader, pattern.compile("^(\\s*)[\\s,]*(\\s*)[\\s,]*(.*)$"),                                            3, 2, 1)); // data, label, name fields      // create model 100 topics, alpha_t = 0.01, beta_w = 0.01     //  note first parameter passed sum on topics, while     //  second      int numtopics = 100;     paralleltopicmodel model = new paralleltopicmodel(numtopics, 1.0, 0.01);      model.addinstances(instances);      // use 2 parallel samplers, each @ 1 half corpus , combine     //  statistics after every iteration.     model.setnumthreads(2);      // run model 50 iterations , stop (this testing only,      //  real applications, use 1000 2000 iterations)     model.setnumiterations(50);     model.estimate();      // show words , topics in first instance      // data alphabet maps word ids strings     alphabet dataalphabet = instances.getdataalphabet();      featuresequence tokens = (featuresequence) model.getdata().get(0).instance.getdata();     labelsequence topics = model.getdata().get(0).topicsequence;      formatter out = new formatter(new stringbuilder(), locale.us);     (int position = 0; position < tokens.getlength(); position++) {         out.format("%s-%d ", dataalphabet.lookupobject(tokens.getindexatposition(position)), topics.getindexatposition(position));     }     system.out.println(out);      // estimate topic distribution of first instance,      //  given current gibbs state.     double[] topicdistribution = model.gettopicprobabilities(0);      // array of sorted sets of word id/count pairs     arraylist<treeset<idsorter>> topicsortedwords = model.getsortedwords();      // show top 5 words in topics proportions first document     (int topic = 0; topic < numtopics; topic++) {         iterator<idsorter> iterator = topicsortedwords.get(topic).iterator();          out = new formatter(new stringbuilder(), locale.us);         out.format("%d\t%.3f\t", topic, topicdistribution[topic]);         int rank = 0;         while (iterator.hasnext() && rank < 5) {             idsorter idcountpair = iterator.next();             out.format("%s (%.0f) ", dataalphabet.lookupobject(idcountpair.getid()), idcountpair.getweight());             rank++;         }         system.out.println(out);     }      // create new instance high probability of topic 0     stringbuilder topiczerotext = new stringbuilder();     iterator<idsorter> iterator = topicsortedwords.get(0).iterator();      int rank = 0;     while (iterator.hasnext() && rank < 5) {         idsorter idcountpair = iterator.next();         topiczerotext.append(dataalphabet.lookupobject(idcountpair.getid()) + " ");         rank++;     }      // create new instance named "test instance" empty target , source fields.     instancelist testing = new instancelist(instances.getpipe());     testing.addthrupipe(new instance(topiczerotext.tostring(), null, "test instance", null));      topicinferencer inferencer = model.getinferencer();     double[] testprobabilities = inferencer.getsampleddistribution(testing.get(0), 10, 1, 5);     system.out.println("0\t" + testprobabilities[0]); } 

}

i solved problem. firstly, tried import trove3.1 in eclipse not work. then, noticed in mallet folder, there "lib" folder, included jar files in eclipse. bingo! works.


Comments

Popular posts from this blog

javascript - Jquery show_hide, what to add in order to make the page scroll to the bottom of the hidden field once button is clicked -

python - Django-cities exits with "killed" -

python - How to get a widget position inside it's layout in Kivy? -