java - Figuring out QuadCurveTo's parameters -


could guys me figuring out quadcurveto's 4 parameters , tried find information on quadcurveto, it's hard understand without picture. know 4 parameters draw 2 lines control path , how know/calculate coordinates object pass throught knowing 2 path-controller. there formulas?

import javafx.animation.pathtransition; import javafx.animation.pathtransition.orientationtype; import javafx.application.application; import static javafx.application.application.launch; import javafx.scene.group; import javafx.scene.scene; import javafx.scene.paint.color; import javafx.scene.shape.moveto; import javafx.scene.shape.path; import javafx.scene.shape.quadcurveto; import javafx.scene.shape.rectangle; import javafx.stage.stage; import javafx.util.duration;  public class _6 extends application {      public rectangle r;      @override     public void start(final stage stage) {          r = new rectangle(50, 80, 80, 90);          r.setfill(javafx.scene.paint.color.orange);         r.setstrokewidth(5);         r.setstroke(color.antiquewhite);          path path = new path();            path.getelements().add(new moveto(100.0f, 400.0f));          path.getelements().add(new quadcurveto(150.0f, 60.0f, 100.0f, 20.0f));          pathtransition pt = new pathtransition(duration.millis(1000), path);          pt.setduration(duration.millis(10000));         pt.setnode(r);         pt.setpath(path);         pt.setorientation(orientationtype.orthogonal_to_tangent);         pt.setcyclecount(4000);         pt.setautoreverse(true);          pt.play();          stage.setscene(new scene(new group(r), 500, 700));         stage.show();     }      public static void main(string[] args) { launch(args); } } 

you can find coordinates on new quadcurveto(150.0f, 60.0f, 100.0f, 20.0f) line, , below sample picture of quadratic bezier.

enter image description here

from wikipedia

b(t)=(1-t)*(1-t)*p0 + 2*(1-t)*t*p1 + t*t*p2, 0<=t<=1 

here p0 start point, p1 control point, , p2 end point. note t might not equal time point of transition, transition has modifiable interpolator; path pass through points defined curve. in example, p0=(100, 400), p1=(150, 60), , p2=(100, 20).

the interpretation take linear interpolation between start point , control point (call q0(t)) , linear interpolation between control point , end point (q1(t)); curve linear interpolation between q0(t) , q1(t) @ t: b(t)=(1-t)*q0(t)+t*q1(t)


Comments

Popular posts from this blog

javascript - Jquery show_hide, what to add in order to make the page scroll to the bottom of the hidden field once button is clicked -

python - Django-cities exits with "killed" -

python - How to get a widget position inside it's layout in Kivy? -