parallel processing - Python multiprocessing synchronization -


i have function "function" want call 10 times using 2 times 5 cpus multiprocessing.

therefore need way synchronize processes described in code below.

is possible without using multiprocessing pool? strange errors if (for example "unboundlocalerror: local variable 'fd' referenced before assignment" (i don't have such variable)). processes seem terminate randomly.

if possible without pool. thanks!

number_of_cpus = 5 number_of_iterations = 2  # array processes. processing_jobs = []  # start 5 processes 2 times. iteration in range(0, number_of_iterations):      # todo synchronize here      # start 5 processes @ time.     cpu_number in range(0, number_of_cpus):          # calculate offset current function call.         file_offset = iteration * cpu_number * number_of_files_per_process          p = multiprocessing.process(target=function, args=(file_offset,))         processing_jobs.append(p)         p.start()      # todo synchronize here 

this (anonymized) traceback of errors when run code in pool:

process process-5: traceback (most recent call last):   file "/usr/lib/python2.7/multiprocessing/process.py", line 258, in _bootstrap     self.run()   file "/usr/lib/python2.7/multiprocessing/process.py", line 114, in run     self._target(*self._args, **self._kwargs)   file "python_code_3.py", line 88, in function_x     xyz = python_code_1.function_y(args)   file "/python_code_1.py", line 254, in __init__     self.wk =  file.wk(filename)   file "/python_code_2.py", line 1754, in __init__     self.__parse__(name, data, fast_load)   file "/python_code_2.py", line 1810, in __parse__     fd.close() unboundlocalerror: local variable 'fd' referenced before assignment 

most of processes crash not of them. more of them seem crash when increase number of processes. thought might due memory limitations...

here's how can synchronization you're looking without using pool:

import multiprocessing  def function(arg):     print ("got arg %s" % arg)  if __name__ == "__main__":     number_of_cpus = 5     number_of_iterations = 2      # array processes.     processing_jobs = []      # start 5 processes 2 times.     iteration in range(1, number_of_iterations+1):  # start range 1 don't multiply zero.          # start 5 processes @ time.         cpu_number in range(1, number_of_cpus+1):              # calculate offset current function call.             file_offset = iteration * cpu_number * number_of_files_per_process              p = multiprocessing.process(target=function, args=(file_offset,))             processing_jobs.append(p)             p.start()          # wait processes finish.         proc in processing_jobs:             proc.join()          # empty active job list.         del processing_jobs[:]          # write file here         print("writing") 

here pool:

import multiprocessing  def function(arg):     print ("got arg %s" % arg)  if __name__ == "__main__":     number_of_cpus = 5     number_of_iterations = 2      pool = multiprocessing.pool(number_of_cpus)     in range(1, number_of_iterations+1): # start range 1 don't multiply 0         file_offsets = [number_of_files_per_process * * cpu_num cpu_num in range(1, number_of_cpus+1)]          pool.map(function, file_offsets)         print("writing")         # write file here 

as can see, pool solution nicer.

this doesn't solve traceback problem, though. it's hard me how fix without understanding what's causing that. may need use multiprocessing.lock synchronize access resource.


Comments

Popular posts from this blog

javascript - Jquery show_hide, what to add in order to make the page scroll to the bottom of the hidden field once button is clicked -

python - Django-cities exits with "killed" -

python - How to get a widget position inside it's layout in Kivy? -