R filtering a dataframe for a proportion of columns meeting criteria -


i'm sure answer question out there already, can't find it, since i'm beginner @ r , don't know search terms use.

i want retrieve rows in data frame given proportion of columns meet criteria. example, 2/3 columns >1.3.

here have far:

a<-c(1.1,1.2,1.3,1.4,1.5) b<-c(1.3,1.4,1.5,1.6,1.7) c<-c(1.5,1.6,1.7,1.8,1.9) data<-data.frame(a,b,c) data`       b   c 1 1.1 1.3 1.5 2 1.2 1.4 1.6 3 1.3 1.5 1.7 4 1.4 1.6 1.8 5 1.5 1.7 1.9   c<-function(x) (length(x[(x>1.4)]))>=(2/3*ncol(data)) d<-apply(data,1,c) result<-data[d,] result       b   c 3 1.3 1.5 1.7 4 1.4 1.6 1.8 5 1.5 1.7 1.9 

this works, feel there must simpler way, or function written differently? i'm still trying undestand whole function-thing.

of course, in reality dataframe have alot of columns.

/grateful beginner

maybe (should more efficient rowsums vectorized , saves need in using apply loop)

data[rowsums(data > 1.4) >= 2/3*ncol(data),]  ##       b   c ## 3 1.3 1.5 1.7 ## 4 1.4 1.6 1.8 ## 5 1.5 1.7 1.9 

or if prefer function, try

myfunc <- function(x) x[rowsums(x > 1.4) >= 2/3*ncol(x), ] myfunc(data)  ##       b   c ## 3 1.3 1.5 1.7 ## 4 1.4 1.6 1.8 ## 5 1.5 1.7 1.9 

Comments

Popular posts from this blog

javascript - Jquery show_hide, what to add in order to make the page scroll to the bottom of the hidden field once button is clicked -

python - Django-cities exits with "killed" -

python - How to get a widget position inside it's layout in Kivy? -